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Axisymmetric Rayleigh–Bénard convection in a cylinder with vertical axis is stud-
ied. The nonlinear behaviour is investigated near the onset of convection using an
eigenfunction expansion. It is found that initially a steady target pattern develops;
the number of rolls depends only on the aspect ratio of the box. At about 5%
beyond onset, an oscillatory pattern develops, in which the number of rolls oscillates
between two adjacent values. The transitions between the initial steady state and this
oscillatory pattern are also investigated, and fall into two main categories. As the
Rayleigh number is reduced to the transition point, either the period of the travelling
wave tends to infinity, whilst its amplitude stays finite, or there is a sudden transition
to a vascillating pattern, the amplitude of which becomes smaller and finally vanishes,
whilst the period remains finite. The results are compared with experimental work.

1. Introduction
Rayleigh–Bénard convection is known to exhibit a wealth of different patterns. In

this paper, axisymmetric convection in a cylinder is considered, and the transition
from steady patterns of concentric rings, called targets, to a pattern of travelling
waves is investigated. Many convection experiments have produced target patterns,
for example those by Koschmieder (1993) and Plapp, Egolf & Bodenschatz (1998).
Such patterns form most readily in low- or moderate-Prandtl-number fluids and
in large aspect ratio systems. However, relatively little is understood about their
dynamics. This paper is an investigation into the dynamics of axisymmetric patterns
and examines the formation of an axisymmetric radially travelling wave. As well as
in convection, target patterns form in many other systems, for example the Belousov–
Zhabotinsky reaction (Vidal et al. 1986) and other reaction–diffusion experiments,
slime mould (Weijer 1999), catalysis experiments (Berdau et al. 1997), and Faraday
experiments (Edwards & Fauve 1994), and so the results in this paper may shed light
on these other systems.

The axisymmetric Rayleigh–Bénard convection equations are investigated in a fluid-
filled cylindrical box with vertical axis. Tuckerman & Barkley (1988) also studied this
system using a Prandtl number of 10 and an aspect ratio of 5: they found a travelling
wave in which the concentric rings in travel inwards. Here, the analysis of that paper
is extended to include a continuously varying aspect ratio in the approximate range
4 6 Γ 6 10, and the Prandtl number takes the fixed value 0.1. A detailed bifurcation
study is performed and a similar oscillatory pattern is also found for all aspect
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ratios for Rayleigh numbers above about 5% beyond onset, but it is formed by a
different mechanism and the rolls in the travelling wave travel outwards rather than
inwards. The mechanism of its formation involves one or more global bifurcations;
their precise nature depends on the aspect ratio. Hu, Ecke & Ahlers (1993) also found
a similar periodic orbit experimentally, using Prandtl number 0.93 and aspect ratio
41. Behringer & Gao (1983) investigated the onset of time-dependence in convection
in a cylinder, finding a travelling wave far above onset. The transition could occur in
two qualitatively different ways, depending on the aspect ratio. In one the period of
the travelling wave tends to infinity whilst the amplitude stays finite and in the other,
the amplitude tends to zero while the period stays non-zero.

In § 2, the eigenfunctions of the Rayleigh–Bénard convection equations are derived
and equations describing the evolution of the amplitudes of these eigenfunctions are
found. In § 3, the solutions of these equations are investigated for a fixed value of
the Prandtl number. All the solutions and their stability are found close to onset for
aspect ratios between 6.68 and 8.10. Finally, in § 4, these results and their applications
are discussed.

2. Derivation of amplitude equations
In this section the Rayleigh–Bénard convection equations and the boundary con-

ditions to be used are described. The eigenfunctions of the linearized system are
calculated and the marginal stability curves are plotted in parameter space. Finally
the evolution equations for the amplitudes of the eigenfunctions are derived and the
choice of truncation is discussed.

2.1. Rayleigh–Bénard equations

The Boussinesq approximation is used and the variables are rescaled to simplify the
equations to their standard form:

∂u

∂t
+ (u · ∇)u = −∇p+ σRθẑ + σ∇2u, (2.1a)

∂θ

∂t
+ (u · ∇)θ = ∇2θ + u · ẑ, (2.1b)

∇ · u = 0, (2.1c)

to be solved in a cylindrical box of height one and radius Γ . In (2.1) ẑ is a unit vector
in the vertical direction, u is the scaled velocity of the fluid, and θ is related to the
fluid temperature T by T = T0 + (1− z + θ)∆T . The Prandtl number σ is ν/κT and
the Rayleigh number R is given by d3gαT∆T/κT ν, where κT is the thermal diffusivity,
ν is the kinematic viscosity, g is the acceleration due to gravity, d is the depth of the
layer, αT is the thermal expansion coefficient and ∆T is the temperature difference
across the layer.

Stress-free, rather than non-slip, boundary conditions are used in order to simplify
the analysis, together with insulating sidewall boundary conditions. In the cylindrical
container these are

ur =
∂

∂r

(uφ
r

)
=
∂uz

∂r
=
∂θ

∂r
= 0 at r = Γ , (2.2a)

∂ur

∂z
=
∂uφ

∂z
= uz = θ = 0 at z = 0, 1. (2.2b)
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With these boundary conditions, the linearization of the system (2.1) is self-adjoint
and so the eigenvalues are all real, and the eigenfunctions are pairwise orthogonal.

In order to investigate the possible solutions of these equations an eigenfunction
expansion is used. The system (2.1) is linearized and solved to give the eigenfunctions.
The variables (u, θ) are written as a sum of the eigenfunctions, each multiplied by an
amplitude. These expressions are substituted into the full nonlinear equations (2.1),
yielding a set of ordinary differential equations whose solutions approximate those
of the full system (2.1). If enough eigenfunctions are used in the truncation, then this
method essentially solves (2.1) using a spectral method. However, here the aim is to
use a more manageable number of equations so that the details of the solution can
be found for a continuous range of parameter values rather than at isolated points
as would be the case for a full simulation.

2.2. Solution of the linearized equations

In this section the equations (2.1) are linearized and their axisymmetric eigenfunctions
found. In a cylindrical container the eigenfunctions involve Bessel functions in the
radial direction (Liang, Vidal & Acrivos 1969; Jones, Moore & Weiss 1976). The
method used here is based on ideas from Rosenblat, Davis & Homsy (1982) and
similar work was also done by Charlson & Sani (1970). Batchelor & Nitsche (1993)
also found the eigenfunctions in an infinite vertical cylinder and their work agrees with
that presented here. This is a consequence of the relationship between periodic and
Neumann boundary conditions for elliptic operators (see e.g. Crawford et al. 1991).
The eigenfunctions fall into two categories: those without vertical vorticity, called
poloidal modes, and those with non-zero vertical vorticity, called toroidal. The toroidal
eigenfunctions have only SO(2) symmetry, whereas the poloidal eigenfunctions have
O(2) symmetry. However, the primary branches have O(2) symmetry, meaning that
the solutions on these branches are poloidal and the toroidal eigenfunctions may only
contribute to a solution after a secondary bifurcation. However, it was found that
such a bifurcation did not occur, and so for brevity the toroidal eigenfunctions are
omitted.

The velocity and temperature fields are written as a sum of separable solutions
of ∇2u = −α2u and ∇2θ = −α2θ in cylindrical polar coordinates (r, φ, z). Stress-free
boundary conditions are used and splitting the velocity and temperature components
simplifies the analysis and enables better comparison with previous work, for example
the Lorenz equations (Lorenz 1963). The eigenfunctions at the zero solution are

ukn =

(
−nπ
λk
J1(λkr) cos(nπz), 0, J0(λkr) sin(nπz)

)
,

θkn = J0(λkr) sin(nπz),

where Jm is the Bessel function of the first kind of order m; k, n ∈ N, where λk = j1k/Γ
and j1k is the kth positive solution of J1(x) = 0; α2

kn is given by λ2
k + n2π2. The linear

growth rate s of the amplitude of the eigenfunction is a solution of

α2
kn(α

2
kn + s)(α2

kn + s/σ) = Rλ2
k. (2.3)

The eigenfunction ukn has k rolls in the radial direction and n rolls in the vertical
direction. The neutral stability curves are shown in figure 1. As the temperature
difference across the layer increases from zero, the first non-trivial patterns would be
seen as these curves are crossed – these are steady targets; the number of rolls in the
target depends on the value of k in the corresponding eigenfunction (uk1, θk1).
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Figure 1. The marginal stability curves (solid curves) of the eigenfunctions (uk1, θk1) for various
values of k. The curves for (ukn, θkn) for larger n lie at much higher Rayleigh numbers. The solid
circles mark the points of intersection of these curves, which are codimension-two points. Also
plotted are the saddle-node bifurcations (dotted curves), Hopf bifurcations (dashed curves) and
Takens–Bogdanov points (open circles). These will be explained later, and are found using the set of
modes S = {(k, 1) : 1 6 k 6 7, (k, 2) : 1 6 k 6 14} for Γ < 3.9 for the saddle-nodes and for Γ < 6.7
for the Hopf bifurcations and for larger Γ , S = {(k, 1) : 1 6 k 6 10, (k, 2) : 1 6 k 6 20}.

With non-slip boundary conditions, the eigenfunctions would be a linear superpo-
sition of three different Bessel functions, depending on all three parameters R, Γ and
σ, and would need to be recalculated every time the parameters change, a process
involving finding the roots of a cubic equation that would take a substantial amount
of time. In the stress-free case, the only parameter dependence is on Γ .

Having found the eigenfunctions, the system of partial differential equations (2.1)
may be converted into a set of ordinary differential equations by truncation.

2.3. Time evolution equations for the amplitudes of the eigenfunctions

In order to investigate the system (2.1) a finite set of the eigenfunctions is chosen. The
amplitude of all the other eigenfunctions is assumed to be zero. Let S = {(ki, ni) : i =
1, 2, . . . q}, represent the finite set of eigenfunctions {ui, θi : 1 6 i 6 q} to be used,
where ui is an abbreviation for uki,ni etc. Thus the velocity and temperature fields are
approximated by u =

∑
i∈S aiui, θ =

∑
i∈S biθi. Substiting these expressions into the

governing equations (2.1) gives equations describing the evolution of the amplitudes:

ȧi =
σRλ2

i

α2
i

bi − σα2
i ai +

∑
j,k∈S

ajak
〈ui · (uj × ωk)〉
〈|ui|2〉 (2.4a)

ḃi = ai − α2
i bi −

∑
j,k∈S

ajbk
〈θiuj · ∇θk〉
〈|θi|2〉 . (2.4b)

If ai is mapped to (−1)niai and bi to (−1)nibi, then the equations are unchanged. This
symmetry corresponds to reflecting the box in the horizontal midplane and its action
will be denoted by κ.
S must contain sufficiently many elements to describe the dynamics accurately,

but on the other hand the number of equations is 2q and the time taken for the
computations increases dramatically with q. Thus it is important to choose S with
care.
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2.4. Weakly nonlinear behaviour

The method will only produce accurate results if the eigenfunctions omitted from
S have very small amplitudes in the true solution. In order to decide which of the
eigenfunctions may be neglected whilst still retaining an accurate solution, the weakly
nonlinear behaviour of the equations is derived.

Parameter values such that the largest linear growth rate of any eigenfunction is
small and positive are considered. These are points lying just above a neutral stability
curve in figure 1, but not above any of the others. The values of σ and Γ are fixed
and

R = R0 + εR1 + ε2R2 + · · · ,
u = εu1 + ε2u2 + · · · ,
θ = εθ1 + ε2θ2 + · · · ,

where

R0 =
((j1k0

/Γ )2 + π2)3

(j1k0
/Γ )2

is the value of R on the neutral stability curve corresponding to (uk01, θk01) and ε is a
small parameter. Then ui and θi are expanded as

ui =
∑
k,n

aiknukn, θi =
∑
k,n

biknθkn.

These expressions are substituted into the governing equations. At each order in ε the
resulting equations are multiplied by each eigenfunction in turn and integrated over
the interior of the cylinder. To first order in ε

u1 = α2
k01uk01, θ1 = θk01,

and R1 = 0. At second order in ε, the only coefficients a2
kn and b2

kn that are non-zero
are

a2
k2 = −

(
α2
k2〈uk2 · (u1 · ∇u1)〉/〈|uk2|2〉+ (σR0λ

2
k/α

2
k2)〈θk2u1 · ∇θ1〉/〈θ2

k2〉
(σλ2

k/α
2
k2)(α

6
k2/λ

2
k − R0)

)
,

b2
k2 = −

(
(〈uk2 · (u1 · ∇u1)〉/〈|uk2|2〉) + σα2

k2〈θk2u1 · ∇θ1〉/〈θ2
k2〉

(σλ2
k/α

2
k2)(α

6
k2/λ

2
k − R0)

)
.

Also,

R2 =
−〈u1 · u2 × ω1〉+ σR0〈θ1u1 · ∇θ2〉

σ〈w1θ1〉 ,

=
∑
k,n

1

σ〈w1θ1〉 (−a
2
kn〈u1 · ukn × ω1〉+ b2

knσR0〈θ1u1 · ∇θkn〉),

where ω1 = ∇× u1.
In order to compare how much effect the presence of each eigenfunction has at

second order, the contributions to R2 from the eigenfunction uk2 and θk2 are calculated.
Those eigenfunctions making very large contributions should certainly be included
in the truncation. An example with k0 = 5 is shown in figure 2. For this graph, Γ is
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Figure 2. Contributions of the eigenfunction (uk2, θk2) to R2 for various values of k. Here, k0 = 5
and the parameters are Γ ≈ 7.41, R0 ≈ 657.5 and σ = 0.1. R2 is equal to the sum of all these
contributions.

chosen so that R takes its minimum value along the marginal stability curve, although
the features of the graph are unchanged for any value of Γ in the region where the
marginal stability curve for (u5,1, θ5,1) is lower than all the other curves in figure 1.
In particular, the contributions decrease by about two orders of magnitude when
k increases past 2k0 and continue decreasing as k is increased further. This feature
occurs for all k0 6 20 and all Γ .

This analysis seems to suggest that for values of R just above the critical value,
the eigenfunctions (uk2, θk2) for k 6 2k0 must be included in the truncation and that
the rest may be discarded. That is S = {(k0, 1), (k, 2) : 1 6 k 6 2k0}. If the parameters
(Γ , R) lie near the crossing point of two of the curves in figure 1, then the set of
eigenfunctions needed is the union of the two sets for the cases where (Γ , R) just lies
near one of the curves, that is S = {(k, 1) : k0 6 k 6 k0 + 1, (k, 2) : 1 6 k 6 2k0}.

However, it was found that this analysis does not predict a sufficient number of
modes even to analyse modestly supercritical behaviour with R less than 10% above
onset. In order to determine a suitable truncation, the set of modes used was gradually
enlarged until no further qualitative changes in the behaviour were seen. It was found
that S = {(k, 1) : k0 6 k 6 k1, (k, 2) : 1 6 k 6 2k1} for some k1 > k0 was needed. The
minimal value of k1 − k0 required tended to increase as Γ increases.

3. Results
Many experiments that have produced targets used low Prandtl numbers (about 1

or less) (e.g. Hu et al. 1993; Rüdiger & Feudel 2000). Here, σ is fixed at 0.1 and the
solutions of the set of equations (2.4) near onset are found and discussed.

3.1. Behaviour for Γ 6 10

A branch-following program, AUTO (Doedel et al. 1997), was used to follow solutions
of the truncated system as the parameters are gradually changed. First just the
Rayleigh number was varied. Two examples for different aspect ratios are shown
in figure 3. In order to build up the picture of what happens in parameter space,
the values of R and Γ at different types of bifurcation are found. Starting from the
saddle-node bifurcation point (solid triangle) in figure 3(b), Γ was allowed to vary
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(a) (b)

665 670 675 680 685 660 670 680 690
R R

Figure 3. Bifurcation diagrams showing the steady solutions for (a) Γ = 6.7 and (b) Γ = 7.25.
Stable solutions are shown by thick curves, solid circles represent pitchfork bifurcations, triangles
represent saddle-node bifurcations and squares represent Hopf bifurcations. The truncation is given
by S = {(k, 1) : 4 6 k 6 8, (k, 2) : 1 6 k 6 16}.

and the value of R at the saddle-node bifurcation point was computed. The resulting
curve in the (Γ , R)–plane is shown in figure 1. In a similar way, the positions of the
Hopf bifurcations were also found and are plotted on the same figure. These are
always on the first primary branch of solutions. For all Γ the bifurcation diagram
is qualitatively the same as either figure 3(a) or figure 3(b) depending on whether
or not there is a Hopf bifurcation at that value of Γ . The diagram in figure 3(a) is
qualitatively the same as that computed in Tuckerman & Barkley (1988), which was
obtained from a numerical simulation of the axisymmetric equations using Γ = 5 and
σ = 10 and non-slip boundary conditions.

The ranges for Γ whose endpoints are given by the lowest set of codimension-two
points marked with solid circles in figure 1 are

(2.36, 3.82), (3.82, 5.25), (5.25, 6.68), (6.68, 8.10), (8.10, 9.52), . . . .

In each of these ranges, the behaviour is similar. Since the full details of the transitions
in behaviour are quite complex, for the next section Γ is restricted to just one of these
ranges, (6.68, 8.10), for ease of computation. The behaviour is thought to be similar
in the other regions.

For all values of Γ ∈ (5, 10), if R was taken above the saddle-node curve then
for almost all initial conditions, the solution tended towards a periodic orbit, An
example of the behaviour on this orbit is given in figure 4, which shows the motion
of the fluid on a cross-section through the cylinder. As can be seen, it is a pattern of
outwardly travelling concentric rings. The number of rolls oscillates between 5 and
6. Such a travelling wave was found for all values of R and Γ lying above the curve
of saddle-node bifurcations up to about R = 700. The orbit has a symmetry: starting
from a given point in the orbit, upon advancing half a period around the orbit and
applying κ, the original solution is again recovered. This spatio-temporal symmetry
is denoted by κ̃. None of the bifurcations described so far can produce this periodic
orbit. It cannot come from the Hopf bifurcation (dashed curve in figure 1), because
that bifurcation initially produces small vascillations about the steady target solution.
During these the rolls can move back and forth, but they cannot form a travelling
wave since the oscillations only have a small amplitude. The mechanisms that give
rise to this wave are investigated in § 3.2.
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Figure 4. Streamlines of the travelling wave with Γ = 7.5 and R = 690, computed using
S = {(k, 1) : 4 6 k 6 8, (k, 2) : 1 6 k 6 16}. The diagrams show snapshots of the solution at equally
spaced intervals (one eighth of the period) on the periodic orbit. Solid curves indicate anti-clockwise
motion and dashed curves indicate clockwise motion. The symmetry κ̃ is also evident: two diagrams
that are half a period apart (e.g. (a) and (e)) are reflections of one another in the horizontal
mid-plane (note that clockwise motion becomes anti-clockwise motion and vice versa under this
transformation).

3.2. Detailed behaviour for Γ ∈ (6.68, 8.10)

The choice S = {(k, 1) : 4 6 k 6 8, (k, 2) : 1 6 k 6 16} was found to be sufficient to
describe qualitatively accurately all the steady state and Hopf bifurcations for
Γ ∈ (6.68, 8.10). Thus this choice of S is used and is assumed to be sufficient to
describe all the behaviour near onset in this region. AUTO is used to follow the
various curves in parameter space and figure 5(a) gives the complete picture of all the
bifurcations in this range of Γ . The bifurcation diagrams for certain fixed values of
Γ marked on figure 5(a) are given in figure 6. A brief description of the transitions
in behaviour in each diagram follows.

(i) Figure 6(a) (6.6 < Γ < 6.94). As R is increased past the initial pitchfork bifur-
cation, a stable branch of five roll target solutions is created, similar to that shown
in figure 7(i), and the trivial solution becomes unstable. Just after the bifurcation,
the solution is almost the pure eigenfunction u51, but as R increases, other modes
with different numbers of rolls contribute significantly to the solution, although the
overall pattern still has five rolls, figure 7(ii). At the second pitchfork bifurcation at
R = 671.1, a branch of four roll solutions, similar to figure 7(iv) is created. These
solutions are unstable and so would not be seen in an experiment. The solutions
on this second branch soon develop a fifth roll, figure 7(iii). As R is increased, the
two branches become closer together, meeting and annihilating at the saddle-node
bifurcation.

There is also a global bifurcation, giving rise to a periodic orbit with symmetry κ̃.
The periodic orbit is stable if and only if δ > 1 where δ = −λ−/λ+ > 0 and λ+ is
the positive eigenvalue at the saddle-point and λ− is the largest negative eigenvalue
there (see Guckenheimer & Holmes 1986). Figure 5(b) shows a graph of the values
of δ as Γ varies. If the aspect ratio is less than 6.86 then δ > 1 so the periodic
orbit is stable, but for aspect ratios greater than 6.86 it is unstable when it is
formed, but soon undergoes a saddle-node bifurcation to become stable. The global
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Secondary saddle-node bifurcation
Secondary Hopf bifurcation
Gluing  bifurcation at origin
Homoclinic global bifurcation creating two periodic orbits
Heteroclinic global bifurcation creating one symmetric periodic orbit
Saddle-node of small periodic orbits
Saddle-node of large periodic orbits
Primary codimension-two point
Takens – Bogdanov (saddle-node – Hopf) point

690

δ

Γ

Γ

Figure 5. (a) The two-parameter unfolding to show the curves of saddle-node, Hopf and global
bifurcations. The vertical lines show the constant-Γ cuts on which the bifurcation diagrams will
be drawn. (b) Graphs of the eigenvalue ratio δ at the global bifurcations. (c) The ranges of Γ in
which the transitions between stable solutions are qualitatively the same – there are four qualitatively
different types of behaviour, labelled I, II, III and IV. These will be discussed at the end of this
section.

bifurcation occurs in an attracting two-dimensional submanifold of the space spanned
by all the amplitudes ai and bi. Schematic diagrams showing the dynamics on this
manifold at the global bifurcation for Γ < 6.86 are given in figure 8(a)–(c). Before
the bifurcation, 8(a), for almost all initial conditions, the solution tends to a steady
pattern of concentric rings. At the bifurcation point, 8(b), a stable heteroclinic orbit
is formed, meaning that afterwards, 8(c), the solution may either tend to a pattern
of concentric rings or to the periodic orbit, depending on the initial conditions.
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Figure 6. Bifurcation diagrams on the constant-Γ cuts shown in figure 5(a). The vertical axis shows
the amplitude of the solution, which is the square root of

∑
i(a

2
i + b2

i ) for steady solutions, but is
only qualitative for periodic solutions. (a) Γ = 6.8, (b) Γ = 7.0, (c) Γ = 7.25, (d ) Γ = 7.5. The
vertical dotted lines (a–l ) correspond to the phase portraits drawn in figure 8.

For Γ > 6.86 the corresponding phase portraits are shown in figures 8(e), 8( f ) and
8(g). At the saddle-node bifurcation all steady solutions except the trivial one are
annihilated, and the phase portrait is shown in 8(d ), consisting of the stable travelling
wave and the unstable trivial solution. All non-zero initial conditions lead to the
travelling wave, and this scenario occurred for all aspect ratios for larger Rayleigh
numbers.

(ii) Figure 6(b) (6.94 < Γ < 7.08). As Γ increases beyond 6.94, the Takens–
Bogdanov point (see Guckenheimer & Holmes 1986) is passed, see figure 9(a), giving
rise to a Hopf bifurcation, on the first branch and a global bifurcation on the second
branch. The transitions at the global bifurcation are shown in figures 8(g), 8(h) and
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Figure 7. Streamlines of the steady solution on a cross-section of the cylindrical box at the
corresponding labelled points in the bifurcations diagram figure 6(a). The values of R are: (i)
R ≈ 665.0, (ii) R ≈ 679.5, (iii) R ≈ 676.6, (iv) R ≈ 672.7. Solid curves indicate anti-clockwise
rotation and dashed curves indicate clockwise rotation.

(a) (b) (c) (d )

(e) ( f )

(k)

(h)

( l )( j )

(g) (i )

Figure 8. Qualitative phase portraits on the attracting two-dimensional manifold of the system at
for various parameter values shown by vertical dotted lines in figure 6. The axes are amplitudes of
two of the modes, for example a1 and a2. Steady solutions are shown by solid circles and the curves
show some representative trajectories. (a), (b) and (c) The creation of a stable periodic orbit in a
heteroclinic global bifurcation. (d ) The state of the system at large Rayleigh numbers for all aspect
ratios. (e), ( f ) and (g) The destruction of an unstable periodic orbit in the heteroclinic bifurcation
and (g), (h) and (i ) The creation of two unstable periodic orbits in a homoclinic bifurcation. ( j ),
(k ) and (l ) The gluing bifurcation. In these diagrams, κ acts as a rotation through 180◦ about the
origin.

8(i ). In this, two small periodic orbits are created that are reflections of each other
in κ. Again, these orbits are stable if and only if δ > 1, but in this case, δ < 1 (see
figure 5b) so they are unstable.

(iii) Figure 6(c) (7.08 < Γ < 7.42). As Γ increases past 7.08, the two curves of
global bifurcations collide and form a single curve of global gluing bifurcations as
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Figure 9. Enlargements of two regions of figure 5(a) showing (a) the Takens–Bogdanov point
(indicated by an open circle), at which the curve of saddle-node bifurcations (dotted) absorbs a
curve of Hopf bifurcations (dashed) and also a curve of global bifurcations (dash-dot-dot-dot),
and (b) the two curves of global bifurcations (dash-dot-dot-dot and long dash curves) colliding
at Γ = 7.08, R = 681.0 on the curve of pitchfork bifurcations (solid curve) and forming a single
curve of gluing bifurcations (dot-dash curve). Also shown is the curve of saddle-node bifurcations
(dashed), although this is not involved in the transitions.

they cross the curve of pitchfork bifurcations, see figure 9(b). The changes at the
gluing bifurcation are in figures 8( j ), 8(k ) and 8(l ), which shows how the periodic
orbit collides with the origin, forming two smaller periodic orbits. The transitions
from the heteroclinic–homoclinic bifurcation mechanism to the gluing bifurcation
mechanism as the curve of pitchforks is crossed may be examined theoretically in
a neighbourhood of parameter space, see the Appendix. All the gluing bifurcations
for Γ ∈ (7.08, 7.73) have 0 < δ < 1 (see figure 5b), meaning that the periodic orbits
involved are unstable.

(iv) Figure 6(d ) (7.42 < Γ < 7.73). The only difference between figures 6(c) and
6(d ) is that there are now two more saddle-node bifurcations involving the pair of
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Figure 10. An enlargement of a region of figure 5(a) showing the cusp of saddle-node bifurcations
(dash-dot-dot-dot curves). Towards the right-hand side of the picture the curve of saddle-nodes
of periodic orbits with symmetry κ̃ (long-dashed) and the curve of gluing bifurcations (dash-dot)
both become too close to the dash-dot-dot-dot curve to be distinguishable in this picture, the
dash-dot-dot-dot curve remains above the dash-dot curve, which remains above the dotted curve.

small unglued periodic orbits, see figure 10. However, this will have an effect on the
transitions between the stable solutions. As R is increased beyond the Hopf point
a vascillating pattern of concentric rings would be seen, followed by the travelling
wave. Both of these transitions occur in discontinuous jumps. At Γ = 7.56 the Hopf
bifurcation becomes supercritical since one of the curves of saddle-node bifurcations
that was created in the cusp is absorbed into the Hopf bifurcation and disappears.
This means that the transition from steady convection to the vascillating pattern is
now continuous.

For larger values of Γ on the right of figure 5(a), the sequence reverses except for
the positions of the saddle-nodes of periodic orbits. Thus there is another pitchfork–
gluing bifurcation at Γ = 7.73 and another cusp of saddle-node bifurcations at
Γ = 7.84. At Γ = 7.98, the curve of saddle-nodes of large periodic orbits is absorbed
into the curve of heteroclinic global bifurcations, so that the periodic orbit created in
the bifurcation is now stable. Finally at Γ = 8.05 there is another Takens–Bogdanov
bifurcation, so that for larger Γ , the bifurcation diagram is qualitatively the same as
figure 6(a). The only difference at these larger aspect ratios is that the solution on the
second primary branch now has six rolls rather than four, otherwise the transitions
are qualitatively the same.

From this analysis, one may predict which stable patterns would be seen as the
Rayleigh number and aspect ratio vary. In the following, C refers to the conduction
state, S to a steady pattern of concentric rings, V to a vascillating pattern of rings
and T to an outward travelling wave with symmetry κ̃. For any aspect ratio, C will
be seen for low Rayleigh numbers, and at onset there is a smooth transition into S.
Also, at high Rayleigh numbers (beyond about 5% above onset) T is always seen.
For intermediate values of the Rayleigh number there are four qualitatively different
scenarios:

I: as R is increased there is a discontinuous hysteretic transition from S to T, and
on decreasing R the period of T tends to infinity before jumping discontinuously to S.
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II: same as I, but the period of T does not become infinite as R is decreased.
III: as R is increased there is a discontinuous hysteretic transition from S to V

and as R increases further there is another discontinuous hysteretic transition from
V to T.

IV: same as III, but the transition from S to V is continuous and the amplitude of
V tends to zero near this transition point (and the period remains finite).
Figure 5(c) shows the values of Γ where each of these types of behaviour occur. This
agrees with the experimental results of Behringer & Gao (1983), in which Prandtl
numbers in the range 0.54 < σ < 0.69 were used. The aspect ratio was varied
continuously in the range 4 < Γ < 13. Behaviours I and IV were discovered.

4. Discussion
In this paper, the dynamics of axisymmetric convection has been completely de-

scribed near onset for Prandtl number 0.1 for a range of aspect ratios. For all aspect
ratios investigated, as the Rayleigh number increases beyond the critical point a
steady target pattern develops in which the number of rolls depends only on the
aspect ratio. On increasing the Rayleigh number further, this steady solution loses
stability and a sequence of transitions takes place, ending with a travelling wave in
which the concentric rings move radially outward. These secondary transitions take
place at about 5% above onset for aspect ratios between 6.68 and 8.10, whilst for
smaller aspect ratios they are further from onset and for larger ones they are closer
to onset. The details of the secondary transitions vary with the aspect ratio, but there
are two main mechanisms. The first has the travelling wave forming directly from
the steady solution in a discontinuous hysteretic transition, whilst the second has an
intermediate state in which the rolls merely vascillate but do not travel. Both of these
scenarios were found in the experiments of Behringer & Gao (1983).

It may be thought that the work presented here might not relate well to experi-
ments because of the use of unphysical stress-free boundary conditions. In fact, by
the addition of some extra terms into the amplitude evolution equations (2.4), the
neutral stability curves become qualitatively like those obtained with non-slip bound-
aries, that is they are continuous curves with no crossing points. Nonetheless, the
bifurcation diagrams of steady state and Hopf bifurcations are qualitatively the same
and the travelling wave was also present. So one can be fairly confident that, at least
qualitatively, the results found will carry across to the case with non-slip boundaries.

As mentioned, Tuckerman & Barkley (1988) also obtained a similar travelling
wave in a numerical investigation of axisymmetric Rayleigh–Bénard convection,
using Prandtl number 10.0 and aspect ratio 5.0 together with non-slip velocity and
conducting sidewall boundary conditions. The non-slip velocity conditions mean that
the critical Rayleigh number is 1734. Their bifurcation diagram is shown in figure 11.
The formation of the travelling wave is different. As the Rayleigh number is decreased
through the saddle point, the period of the travelling wave becomes longer and finally
infinite, giving the steady solution in a non-hysteretic continuous transition, which
is different from the behaviour found in this paper. However, the mechanism is
related to the heteroclinic global bifurcation mechanism since if the bifurcation (open
triangle) in figure 6(a) moves up the branch until it coincides with the saddle-node
bifurcation (solid triangle) then the bifurcation diagram in figure 11 will be obtained.
Given that different parameters and boundary conditions were used, such a difference
in the results is not surprising. Another difference is that the rolls in their travelling
wave moved radially inward, whereas here they always travel outward, but this may
be due to the different boundary conditions, Prandtl number or aspect ratio.
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R

Figure 11. Bifurcation diagram obtained in Tuckerman & Barkley (1988), using non-slip boundary
conditions, with σ = 10.0 and Γ = 5.0. The triangle marks the saddle-node bifurcation, which
coincides with the global bifurcation in this case.
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Figure 12. (a) The periodic orbit found for σ = 0.1, Γ = 7.5 and R = 690, which is about 5% above
onset. (b) The periodic orbit found in Hu et al. (1993), reproduced with permission, for σ = 0.93,
Γ = 41 and R ≈ 1875, which is about 10% above onset. Black indicates upward moving fluid in the
horizontal midplane and white indicates downward moving fluid there. The umbilicus is the centre
of the target.

Hu et al. (1993) found a similar periodic orbit experimentally, with Prandtl number
0.93 and aspect ratio 41. They found that the centre of the target moves, followed
by emission of radially travelling waves. Here a similar travelling wave has been
predicted, although it is in perfectly axisymmetric convection. In their results, the
oscillations stopped after a few cycles, whereas here they persist. Figure 12 shows
pictures of the two periodic orbits for comparison, and as can be seen, they are
qualitatively similar. The fact that the experimental oscillations stop may be because
the periodic orbit found is in fact unstable to a non-axisymmetric perturbation. This
will be investigated in a future paper.

All the phase portraits for this system can be drawn in two dimensions, see figure 8,
which suggests the possibility of approximating the convection equations by a two-
dimensional system whose behaviour is qualitatively the same. There is no way of
deriving such a system analytically although ad hoc second-order equations can be
written down. One possibility, from work by Riecke, Crawford & Knobloch (1988),
is the system

ż = µz + z̄ + (−1 + ia)|z|2z,
where a ∈ R and µ, z ∈ C. With a = 0.8 for example, this system can exhibit much
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Figure 13. Graphs of zn+1 against zn with A = 1, λ+ = 1 µ = 0. (a) δ = 0.01, (b) δ = −0.01.
The dashed lines are graphs of zn+1 = zn, so that the fixed points of the map are given by the
intersections of the two graphs.

of the behaviour found here. Taking suitable cuts in the complex µ-plane, bifurcation
diagrams that are qualitatively the same as figures 6(a), 6(b) and 6(c) can be produced.
However, since the nonlinear behaviour cannot be derived analytically, this system
will probably not provide much more insight. Harris, Bassom & Soward (2002) also
found a qualitatively similar bifurcation structure in a model of spherical Couette
flow. All these systems behave similarly because they all have the same symmetry
properties.

The methods outlined can be extended to non-axisymmetric convection in a
straightforward manner, which is work currently in progress. However, for the non-
axisymmetric case the truncated system will contain many more equations, since the
non-axisymmetric eigenfunctions must also be included. There is also no symmetry
argument to exclude the toroidal eigenfunctions corresponding to that in § 2.2, and
these eigenfunctions will appear immediately after onset. One phenomenon that may
be studied using these techniques is meandering of a spiral tip or of the centre of the
target (see Barkley, Kness & Tuckerman 1990). The tip of a spiral may stay stationary
or it can move, either tracing out a circular path or performing epicycles (circles upon
circles). At present it is not known for what parameter values the different types of
meandering occur. The analysis described here could be used to help predict these
regions and will be the subject of a future paper.

I wish to thank Michael Proctor and Alastair Rucklidge for many helpful con-
versations and guidance. The numerical bifurcations were computed with the help of
AUTO (Doedel et al. 1997) and DsTool (Guckenheimer et al. 1991). I am grateful to
the EPSRC for a research studentship and to Trinity College for travel support.

Appendix. Analysis of the behaviour where the curve of gluing bifurcations
meets the curve of pitchfork bifurcations

The positions of the curves near this point may be calculated theoretically using a
small-box procedure. The calculation is explained in detail here as it is not available
in the literature, although a similar calculation was done by Hirschberg & Knobloch
(1993) for a S̆il’nikov–Hopf bifurcation point: the solution presented here can be
found by letting the frequency of the travelling wave created at the Hopf bifurcation
tend to zero. It is done in two dimensions since near this point there is an attracting
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two-dimensional invariant manifold on which all the dynamics lie. The coordinates
are denoted by x and y where the x-axis is in the direction of the local unstable
manifold and the y-axis is in the direction of the local stable manifold. The phase
space is split into two regions by placing a square box of side length 2h, where h is
small, centred on the origin (the conduction solution). Inside the box, the dynamics
are approximated by the simplified system

ẋ = λ+x, ẏ = λ−y − y3,

where λ+ is the positive eigenvalue at the origin and λ− is the largest negative
eigenvalue there. Usually ẏ = λ−y, but here the extra term is needed since λ− is
near zero (it passes through zero at the pitchfork bifurcation). Outside the box, if a
trajectory leaves the box at the point (h, y) then it is assumed to return to the box
at (−µ + Ay, h) where µ is a small parameter and A is an order one constant. If the
trajectory leaves the box at (−h, y) then due to the symmetry κ it must return at
(µ+Ay,−h). This system can be solved exactly, and using the lines y = ±h as Poincaré
sections, if the trajectory starts from (x0, y0) where y0 = ±h and returns for the nth
time to one of the Poincaré sections at the point (xn, yn), then the recurrence relation

xn+1 = −sgn(xn)µ+ sgn(yn)A

√
−λ+δ

1− |xn/h|−2δ(1 + λ+δ/h2)
, (A 1a)

yn+1 = sgn(xn)h, (A 1b)

is obtained, where δ = −λ−/λ+. By letting zn = xnyn (Lyubimov & Byelousova 1993),
the system becomes one-dimensional,

zn+1 = −µh+ sgn(zn)Ah

√
−λ+δ

1− |zn/h2|−2δ(1 + λ+δ/h2)
. (A 2)

A graph of zn+1 against zn is shown for two different values of δ for the case µ = 0
in figure 13. The qualitative features of the graph do not change as A or λ+ are
varied, and increasing µ simply translates the graph down by µh. Notice that the
graphs are very similar except for their behaviour near zn = 0. If δ > 0 then the
graph is continuous at zero whereas if δ < 0 then the discontinuity is 2A

√−λ−.
Fixed points z∗ of equation (A 2) represent periodic orbits in phase space, which are
stable if the absolute value of the gradient of the solid curve is less than one and
unstable otherwise. Note that −h2 6 z∗ 6 h2, so only fixed points near zero should
be considered, and also that a fixed point z∗ in equation (A 2) does not necessarily
imply a fixed point for the corresponding values x∗ and y∗ of x and y. There are two
different possibilities for the periodic orbit depending on the value of z∗.

(i) If z∗ > 0 then (x∗, y∗) and (−x∗,−y∗) are fixed points of the system (A 1), so there
are two periodic orbits, which are reflections of each other in κ, as in figure 14(a).

(ii) If z∗ < 0 then (x∗, y∗) is a period-two point of (A 1), and is mapped to (−x∗,−y∗).
In this case there is only one periodic orbit with symmetry κ̃, as shown in figure 14(b).

When δ > 0 as in figure 13(a), if µ > 0 then z∗ > 0, meaning that there are two
unstable periodic orbits, figure 8(l ), whereas if µ < 0 then z∗ < 0 so there is one
unstable symmetric periodic orbit as in figure 8( j ), and a gluing bifurcation at µ = 0,
figure 8(k ). When δ < 0, for µ near zero there are no fixed points and so no periodic
orbits near the saddle points, figure 8(g). As µ is increased above A

√
λ+δ, a fixed point

z∗ > 0 appears, so two unstable periodic orbits are created in a global bifurcation,
figures 8(h) and 8(i ), which is the homoclinic bifurcation described earlier. Similarly,
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Figure 14. (a) The periodic orbit if z∗ > 0, (b) the periodic orbit if z∗ < 0.
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Figure 15. Diagram showing the bifurcation curves in the neighbourhood of the point δ = 0, µ = 0.
The phase portraits in the different regions are shown in figure 8 and the labels also correspond to
that figure.

as µ is decreased to below −A√λ+δ, the heteroclinic global bifurcation occurs creating
an unstable periodic orbit, figures 8( f ) and 8(e). The boundaries in (µ, δ) parameter
space between the different regions are shown in figure 15. The layout of the curves
of bifurcations agrees qualitatively with that shown in figure 9(b).
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